MoNet: Moments Embedding Network
نویسندگان
چکیده
Bilinear pooling has been recently proposed as a feature encoding layer, which can be used after the convolutional layers of a deep network, to improve performance in multiple vision tasks. Different from conventional global average pooling or fully connected layer, bilinear pooling gathers 2nd order information in a translation invariant fashion. However, a serious drawback of this family of pooling layers is their dimensionality explosion. Approximate pooling methods with compact properties have been explored towards resolving this weakness. Additionally, recent results have shown that significant performance gains can be achieved by adding 1st order information and applying matrix normalization to regularize unstable higher order information. However, combining compact pooling with matrix normalization and other order information has not been explored until now. In this paper, we unify bilinear pooling and the global Gaussian embedding layers through the empirical moment matrix. In addition, we propose a novel sub-matrix square-root layer, which can be used to normalize the output of the convolution layer directly and mitigate the dimensionality problem with off-the-shelf compact pooling methods. Our experiments on three widely used finegrained classification datasets illustrate that our proposed architecture, MoNet, can achieve similar or better performance than with the state-of-art GDeNet. Furthermore, when combined with compact pooling technique, MoNet obtains comparable performance with encoded features with 96% less dimensions.
منابع مشابه
An extended feature set for blind image steganalysis in contourlet domain
The aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We us...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملSteganalysis of embedding in difference of image pixel pairs by neural network
In this paper a steganalysis method is proposed for pixel value differencing method. This steganographic method, which has been immune against conventional attacks, performs the embedding in the difference of the values of pixel pairs. Therefore, the histogram of the differences of an embedded image is di_erent as compared with a cover image. A number of characteristics are identified in the di...
متن کاملMONET - Monash University's Campus LAN in the 1980s - A Bridge to Better Networking
Monash University, Australia developed an in-house local area network called MONET during the 1980s to meet the needs of the university’s computer users. The Monash University Computer Centre team created and installed an economical computer access network across an extensive campus with distributed computer installations and a large numbers of users. MONET was an early implementation of a Loca...
متن کاملModular organization of protein interaction networks
MOTIVATION Accumulating evidence suggests that biological systems are composed of interacting, separable, functional modules. Identifying these modules is essential to understand the organization of biological systems. RESULT In this paper, we present a framework to identify modules within biological networks. In this approach, the concept of degree is extended from the single vertex to the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.07303 شماره
صفحات -
تاریخ انتشار 2018